The Maximal Rank Conjecture

نویسنده

  • Eric Larson
چکیده

Let C be a general curve of genus g, embedded in Pr via a general linear series of degree d. In this paper, we prove the Maximal Rank Conjecture, which determines the Hilbert function of C ⊂ Pr.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

Tropical Independence Ii: the Maximal Rank Conjecture for Quadrics

Building on our earlier results on tropical independence and shapes of divisors in tropical linear series, we give a tropical proof of the maximal rank conjecture for quadrics. We also prove a tropical analogue of Max Noether’s theorem on quadrics containing a canonically embedded curve, and state a combinatorial conjecture about tropical independence on chains of loops that implies the maximal...

متن کامل

The Maximal Rank Conjecture for Sections of Curves

Let C ⊂ Pr be a general curve of genus g embedded via a general linear series of degree d. The well-known Maximal Rank Conjecture asserts that the restriction maps H(OPr(m)) → H(OC(m)) are of maximal rank; if known, this conjecture would determine the Hilbert function of C. In this paper, we prove an analogous statement for the hyperplane sections of general curves. More specifically, if H ⊂ Pr...

متن کامل

On Fraïssé's conjecture for linear orders of finite Hausdorff rank

We prove that the maximal order type of the wqo of linear orders of finite Hausdorff rank under embeddability is φ2(0), the first fixed point of the ε-function. We then show that Fräıssé’s conjecture restricted to linear orders of finite Hausdorff rank is provable in ACA0 + “φ2(0) is well-ordered” and, over RCA0, implies ACA ′ 0 + “φ2(0) is well-ordered”.

متن کامل

Elliptic Curves with Large Rank over Function Fields

We produce explicit elliptic curves over Fp(t) whose Mordell-Weil groups have arbitrarily large rank. Our method is to prove the conjecture of Birch and Swinnerton-Dyer for these curves (or rather the Tate conjecture for related elliptic surfaces) and then use zeta functions to determine the rank. In contrast to earlier examples of Shafarevitch and Tate, our curves are not isotrivial. Asymptoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017